鋰電池的發明歷史 鋰電池的發明過程
鋰電池是由愛迪生發明的一類由鋰金屬或鋰合金為負極材料、使用非水電解質溶液的電池,是人類生活中必不可少的一件物品。那么大家對鋰電池了解嗎?知道它的發明歷史和發明過程嗎?下面跟隨學習啦小編一起來看看吧。
鋰電池的發明歷史及過程
早期研發
最早期應用在心臟起搏器中。鋰電池的自放電率極低,放電電壓平緩。使得起植入人體的搏器能夠長期運作而不用重新充電。鋰電池一般有高于3.0伏的標稱電壓,更適合作集成電路電源。二氧化錳電池,就廣泛用于計算器,數碼相機、手表中。
為了開發出性能更優異的品種,人們對各種材料進行了研究。從而制造出前所未有的產品。
1992年Sony成功開發鋰離子電池。它的實用化,使人們的行動電話、筆記本、計算器等攜帶型電子設備重量和體積大大減小。
發展進程
1、1970年代埃克森的M.S.Whittingham采用硫化鈦作為正極材料,金屬鋰作為負極材料,制成首個鋰電池。
2、1980年,J. Goodenough 發現鈷酸鋰可以作為鋰離子電池正極材料.
3、1982年伊利諾伊理工大學(the Illinois Institute of Technology)的R.R.Agarwal和J.R.Selman發現鋰離子具有嵌入石墨的特性,此過程是快速的,并且可逆。與此同時,采用金屬鋰制成的鋰電池,其安全隱患備受關注,因此人們嘗試利用鋰離子嵌入石墨的特性制作充電電池。首個可用的鋰離子石墨電極由貝爾實驗室試制成功。
4、1983年M.Thackeray、J.Goodenough等人發現錳尖晶石是優良的正極材料,具有低價、穩定和優良的導電、導鋰性能。其分解溫度高,且氧化性遠低于鈷酸鋰,即使出現短路、過充電,也能夠避免了燃燒、爆炸的危險。
5、1989年,A.Manthiram和J.Goodenough發現采用聚合陰離子的正極將產生更高的電壓。
6、1991年索尼公司發布首個商用鋰離子電池。隨后,鋰離子電池革新了消費電子產品的面貌。
7、1996年Padhi和Goodenough發現具有橄欖石結構的磷酸鹽,如磷酸鋰鐵(LiFePO4),比傳統的正極材料更具優越性,因此已成為當前主流的正極材料。
隨著數碼產品如手機、筆記本電腦等產品的廣泛使用,鋰離子電池以優異的性能在這類產品中得到廣泛應用,并在逐步向其他產品應用領域發展。1998年,天津電源研究所開始商業化生產鋰離子電池。習慣上,人們把鋰離子電池也稱為鋰電池,但這兩種電池是不一樣的。鋰離子電池已經成為了主流。
隨著鋰電池市場競爭的愈發激烈,快速有效的掌握市場發展情況成為企業決策成功與否的關鍵。[3]近些年各行業市場的規模和特點都出現了很大的變革,如何從專業的眼光認識鋰電池行業的發展和市場的轉變,將成為企業未來生存和發展的首要問題。
鋰電池工作原理
鋰金屬電池:
鋰金屬電池一般是使用二氧化錳為正極材料、金屬鋰或其合金金屬為負極材料、使用非水電解質溶液的電池。
放電反應:Li+MnO2=LiMnO2
鋰離子電池:
鋰離子電池一般是使用鋰合金金屬氧化物為正極材料、石墨為負極材料、使用非水電解質的電池。
充電正極上發生的反應為
LiCoO2==Li(1-x)CoO2+XLi++Xe-(電子)
充電負極上發生的反應為
6C+XLi++Xe- = LixC6
充電電池總反應:LiCoO2+6C = Li(1-x)CoO2+LixC6
正極
正極材料:可選的正極材料很多,主流產品多采用鋰鐵磷酸鹽。不同的正極材料對照:
LiCoO2 3.7 V 140 mAh/g
Li2Mn2O 44.0 V 100 mAh/g
LiFePO4 3.3 V 100 mAh/g
Li2FePO4F 3.6 V 115 mAh/g
正極反應:放電時鋰離子嵌入,充電時鋰離子脫嵌。 充電時:LiFePO4 → Li1-xFePO4 + xLi+ + xe-放電時:Li1-xFePO4 + xLi+ + xe- → LiFePO4
負極
負極材料:多采用石墨。新的研究發現鈦酸鹽可能是更好的材料。負極反應:放電時鋰離子脫嵌,充電時鋰離子嵌入。 充電時:xLi+ + xe- + 6C → LixC6放電時:LixC6 → xLi+ + xe- + 6C
與發明有關的相關